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ABSTRACT: Using Langevin dynamics simulations, we investigate the dynamics

of chaperone-assisted translocation of a flexible polymer through a nanopore. We Cis

find that increasing the binding energy ¢ between the chaperone and the chainand . waj particies
the chaperone concentration N, can greatly improve the translocation probability. ~ * Chaperones
Particularly, with increasing the chaperone concentration a maximum translocation
probability is observed for weak binding. For a fixed chaperone concentration, the
histogram of translocation time 7 has a transition from a long-tailed distribution to
a Gaussian distribution with increasing €. T rapidly decreases and then almost
saturates with increasing binding energy for a short chain; however, it has a

Polymer chain § .
widh

minimum for longer chains at a lower chaperone concentration. We also show that

7 has a minimum as a function of the chaperone concentration. For different €, a nonuniversal dependence of 7 on the chain length N
is also observed. These results can be interpreted by characteristic entropic effects for flexible polymers induced by either the
crowding effect from a high chaperone concentration or the intersegmental binding for the high binding energy.

B INTRODUCTION

The transport of biopolymers through a nanopore embedded
in a membrane has attracted wide attention because it closely
connects with polymer physics and is also related to many crucial
processes in biology, examples including the passage of DNA and
RNA through nuclear pores, the translocation of proteins
through the endoplasmic reticulum, and the viral injection of
DNA into a host." In addition, the translocation processes have
been suggested to have potentially revolutionary technological
applications, such as rapid DNA or RNA sequencing,” * gene
therapy,® and controlled drug delivery.®

Polymer translocation through a nanopore faces a large entropic
barrier due to the loss of a great number of available conforma-
tions; thus driving forces are introduced. Two important driving
forces for translocation, both in experimental setups and in vivo, are
provided by an electric field across the membrane and binding
proteins (so-called chaperones). Translocation driven by an
electric field has recently been investigated extensively.” " In this
study, we focus on the latter driving mechanism, which is
responsible for the translocation of proteins'*'® as well as the
DNA translocation through membranes.'®"” To date, there also
have been several theoretical and numerical studies'® >* specifi-
cally devoted to the chain translocation in the presence of
chaperones.

In the pioneering study by Simon et al,'® the role of
chaperones has been recognized as a Brownian ratchet where
the effect of a chaperone’s binding to the protein is to prohibit its
backward diffusion through the pore and consequently speed up
the translocation. This mechanism rectifies the dynamics of the
protein compared with a pure diffusion case. Later, Zandi et al."
investigated the chaperone-assisted translocation of a stiff
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polymer using Brownian dynamics and proposed a new mechan-
ism. At the moment when a binding event occurs, the chain
experiences a net force along its length, pulling the chain. This
result demonstrates that the role of a chaperone is quite different
from that of a Brownian ratchet. In a more detailed theoretical
investigation based on the master equation, Ambjdrnsson et al.*>**
examined chaperone-driven translocation of a stiff polymer.
They identified three limiting dynamical regimes according to
binding situations: slow binding where either the chaperone
concentration is low or binding strength is small (diffusive
regime), fast binding but slow unbinding in which the chain
cannot slide backward (the irreversible binding regime), and fast
binding and unbinding (the reversible binding regime).

However, the aforementioned studies did not take into
account chain flexibility due to the difficulties in theoretical
treatment. Particularly, the chaperone’s intersegment binding
will lead to the bending of the polymer; thus the issue of chain
flexibility is clearly important for chaperone-assisted transloca-
tion. The basic questions associated with this process are the
following: (a) What is the effect of the chaperone concentra-
tion and the binding energy on the translocation probability?
(b) How do the chaperone concentration and the binding
energy affect the translocation time? Is there an optimum
chaperone concentration or an optimum binding energy for
translocation? These questions are very complicated and still
not clear. To this end, using Langevin dynamics we investigate
chaperone-assisted translocation of a flexible polymer through
a nanopore.
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Bl MODEL AND METHODS

In our simulations, the polymer chain is modeled as a bead—spring
chain of Lennard—Jones (LJ) particles with the Finite Extension Non-
linear Elastic (FENE) potential. Excluded volume interaction between
monomers is modeled by a short-range repulsive L] potential: Uy(r) =
4e0[(0/r)* = (0/r)°] + € for r < 27/°0 and 0 for r > 2"/%0. Here, 0 is
the diameter of a bead, and &, is the depth of the potential. The
connectivity between neighboring monomers is modeled as a FENE
spring with Upgnp(r) = —'/2kR3 In(1 — r*/R3), where r is the distance
between consecutive monomers, k is the spring constant, and R, is the
maximum allowed separation between connected monomers.

We consider a two-dimensional geometry as depicted by Figure 1,
where the chaperones of diameter o are modeled as mobile beads
moving within the rectangular box with a pore of width w = 1.60
formed by stationary wall particles of the same size. The wall particle
interacts with the monomer and the chaperone by the repulsive L]
potential as shown above, while the chaperone—monomer interaction
is modeled by an attractive L] potential with a cutoff of 2.50" and
interaction energy €. In the Langevin dynamics simulations, each
monomer is subjected to conservative, frictional, and random forces,
respectively. Namely, m#; =— V(Ur; + Uggng) — &vi + FX where m is
the bead’s mass, & is the friction coefficient, v; is the bead’s velocity, and
F{ is the random force which satisfies the fluctuation—dissipation
theorem.”

In our model, the L] parameters &, 0, and bead mass m fix the system
energy, length, and mass scales, leading to the corresponding time scale
try=(mo*/e;) 12 Each bead corresponds to a Kuhn length of a polymer,
so we choose 0 & 1.5 nm and the bead mass m &~ 936 amu."® We set
kgT = 1.2&0, which means the interaction energy & is 3.39 X 107> Jat
actual temperature 295 K. This leads to a time scale of 32.1 ps."> The
dimensionless parameters in our simulations are chosen to be Ry = 1.5,
k=30, & =0.7. Then the Langevin equation is integrated in time by the
method proposed by Ermak and Buckholz.*° Initially, the first monomer
is placed at the trans side with one unit length to the pore center. Then,
the remaining monomers and chaperones are under thermal collisions
described by the Langevin thermostat to reach the equilibrium state of
the system. Typically, each simulation data value is the average result of
1000 successful translocation events to minimize statistical errors.

The current simulation method was also used to investigate polymer
translocation driven in the presence of a cross-membrane electrical
potential.' ">

B RESULTS AND DISCUSSIONS

Based on the master equation, Ambjornsson et a investi-
gated the dynamics of the chaperone-driven translocation of a
stiff polymer. Although polymeric degrees of freedom of the
translocating chain is neglected and the system is assumed to be
close to equilibrium, their results still can shed light on the
translocation of the flexible polymer.

For the chaperone binding to the binding site, the probability
that a binding site is occupied depends on the chaperone
concentration ¢y and the binding energy €. By calculating the
binding partition function, they obtain a dimensionless para-
meter K = oK as a relevant measure of the effective binding
streng‘ch,zz’23 where the equilibrium binding constant K1 = v,
exp(e/kgT) with vy being the typical chaperone volume. For
univalent binding, the equilibrium probability that a binding site
is occupied is

22,2
12>%3

P9 =k/(1 + ) (1)

occ

For stiff polymers, the force acting on polymer, Fy;,4(s), in
units of kzT/0 for reversible binding of chaperones to the

Cis

Figure 1. Schematic illustration of polymer translocation through a
nanopore in the presence of chaperones depicted by blue particles. The
width of the pore is w = 1.60.

translocating polymer is**
P;,,-nd(s) = 11'1(1 + ) (2)

where s is the translocation coordinate. This result indicates that
the force increases with the chaperone concentration and the
binding energy and is independent of s.

For flexible polymers, we do not expect that the effective
binding strength x and the probability that a binding site is
occupied P;! are the same as those for stiff polymers. Due to the
chain flexibility, one chaperone can attach to several binding sites
(intersegmental binding) for the high binding strength as obs-
erved in the simulation, leading to chain folding. But x and Pg/,
should also increase with the chaperone concentration and the
binding energy.

In addition, for flexible polymers entropic effects from cis and
trans sides give an additional contribution to the total force. As
noted by Ambjornsson et al,,** the binding force and the entropic
force are additive if the chaperone binding is independent of the
curvature of the polymer. For flexible polymers, we can write the
total force acting on the translocating polymer as

F(S) - Fbind (5) - thns,e(S; Coy 5) - Fcis,e(s) (3)

Here, Fy;,4(s) is the force from the binding which should increase
with the chaperone concentration and the binding energy,
although its explicit expression may be different from eq 2 for
high binding energy. F,4us,.(s, co, €) is the entropic force from the
trans side, which also increases with the chaperone concentration
and the binding energy, resulting from either the crowding effect
induced by a high chaperone concentration or the intersegmental
binding. The entropic force from the cis side F,,(s) plays an
important role only at the beginning of the translocation, and it is
negligible compared with Fy,, (s, co, €) particularly for a high
chaperone concentration and binding energy. Therefore, the
translocation dynamics is dominated by the interplay between
Fbind(s) and Ptrans,e(src()lg)'

In our simulation, the chaperone concentration is propor-
tional to the ratio of the number of the chaperone (N.) to the
constant area of the rectangular box (64 x 64). In the following,
we use N, to stand for the chaperone concentration.

Effect of £ and N, on the Translocation Probability. The
translocation probability, Py, refers to the ratio of the success-
ful translocation events to all attempts at given physical para-
meters in the simulation. With increasing &, Py, increases
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Figure 2. Translocation probability as a function of (a) the binding
energy ¢ for different chaperone concentrations (~N,) and (b) the
chaperone concentration for different binding energies. The chain
length N = 64. The inset shows situations for weak binding.

rapidly first and then slowly approaches saturation at larger € for a
higher chaperone concentration, while it continuously increases
for lower N, as shown in Figure 2a.

The observed P,,,,s can be well understood by taking into
account the force in eq 3 as a function of N, and &. The force
exerted on the chain by chaperone’s binding, Fy;,4(s), in-
creases with increasing the chaperone concentration and the
binding energy ¢. For high binding energy &, Fy;,4(s) is the
dominant term in eq 3 for the translocation process. Mean-
while, unbinding is slower; as a consequence the chaperone
acts as a ratchet which would effectively prohibit the chain’s
backward motion out of the pore. Qualitatively, P;,,,; shows
similar behaviors as the probability that a binding site is
occupied; see P;l in eq 1.

Figure 2b shows that Py, also goes up rapidly first with
increasing N, and then slowly approaches saturation at higher
N, for strong binding. The reason for the increase of Py, with
N, is that the probability of a chaperone’s binding to the chain
rises with increasing N.. However, for weak binding P;,,,,s shows
a maximum with increasing N, as shown in the inset of
Figure 2b. This unexpected decrease for high chaperone con-
centration stems from the crowding effect at the trans side.
Obviously, Fj;,4(s) increases with N,; however, Fy ., .(s,c0,€)
also increases with growing N, due to a greater entropic barrier
for the chain translocation and becomes dominant. Moreover,
for a higher chaperone concentration, the collision frequency
between chaperones increases, which leads to an increase in
unbinding events particularly for weak binding. The interplay of
these factors results in the maximum of P,,,,..
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Figure 3. Distribution of translocation time for different binding
energies under N, = 650. The chain length is N = 64.
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Figure 4. Translocation time as a function of the binding energy for
(a) N = 64 and different chaperone concentrations, and (b) N, = 30 and
different chain lengths N.

Distribution of the Translocation Time. We also checked
that the binding energy ¢ has an obvious effect on the shape of
the histogram of the translocation time, as shown in Figure 3.
For N =64 and N, = 650, the distribution of translocation time
is asymmetric with a long exponential tail for weak binding € =
1.3, while, for strong binding & = 5.0, it nearly approaches a
Gaussian distribution. The reason is that with increasing € the
force from binding F;,4(s) greatly increases and is the
dominant term in the total force F(s). For driven translocation
by a cross-membrane electric field, we also observed similar

13567 dx.doi.org/10.1021/ja204892z |J. Am. Chem. Soc. 2011, 133, 13565-13570



Journal of the American Chemical Society

baaaaal

TR

iaasanl

Waiting times

—0—g=2.5 !
—o—g=7.5

T Y |

s
(=]
=)

25 50 75 100 125 150 175 200 225 250
S

o

Figure 5. Waiting time distribution for N = 256, N, = 30, and different
binding strengths &.

distributions for very weak and strong driving forces,
respectively.®'

Translocation Time As a Function of £ and N.. Figure 4a
shows 7 as a function of € for N = 64 and different N.. We find
that 7 decreases with increasing ¢ (at least for £ < 8.5). It is not
difficult to understand the overall fall of 7 with € from the
perspective of the magnitude of F(s) and the ratchet mechanism
that prevents back-sliding motion as noted above. Increasing &
leads to the increase of F;,;(s) and is beneficial to the forward
motion of the chain, speeding up the translocation. What draws
our attention most is the notable discrepancy in the decay rate of
7; i.e,, T decreases quite rapidly with ¢ for € lower than a critical
binding energy &, but much more slowly at € > &, regimes.
Specifically, for € < &, the binding frequency is higher but the
force Fy,4(s) from the binding is smaller compared with the case
of strong binding. The latter dominates the translocation dy-
namics, leading to the observed behavior. For ¢ > ¢, transloca-
tion is slowed due to the competition between Fy;,4(s) and the
entropic force Fy,qs.(s, ¢o, €), leading to a slower increase of F(s)
with increasing €. On the one hand, F,;,4(s) increases with £. On
the other hand, intersegmental binding between translocated
monomers results in larger entropic force Fjyy, (s, co, €) due to
the loss of chain conformations.

However, for longer chain lengths N > 128 and lower
chaperone concentration N, = 30 as shown in Figure 4b, we
observed an optimum ¢ for translocation; namely 7 has a
minimum as a function of &. The time gy for a polymer of
length N to diffuse a distance of the order of the binding site
length 0 is 745 ~ 0*/D ~ NEo*/(kgT) with the diffusion
constant of the chain D = kzT/(N&). The average distance
between chaperones in solutionis R, = L/ (N.)"? where L = 64 s
the length of the simulation box. It is sufficient for a chaperone to
diffuse a distance of the order of R, for any one chaperone to
attach the binding sites (provided the binding energy is suffi-
ciently high), and this time is T,y,,. = R>/4D, = £E6°L*/(ksTN,) =
34.1£0%/(kgT), where the diffusion constant of chaperones D, =
kgT/& due to the same size for a chaperone and a monomer. Due
to diffusion through a nanopore, 7, has a large prefactor.”
Thus, 744 is much longer than 7, for larger N, which
indicates that it is possible for chaperones to bind the chain
very soon by taking into account the range of interaction of the
cutoff 2.50 used in the simulation. For chain lengths N < 128, the
chaperone can almost cover all the binding sites for large € by

N=64 —o— g=1.5 —o— £=2.0}
€=3.0 —v— &=5.0]

/
N

Figure 6. Influence of chaperone concentration on the translocation
time for different &. The chain length is N = 64.

the intersegmental binding; thus there is no minimum for
translocation time. But for longer chains, all chaperones have
become bound and there are no free chaperones left before
completing the translocation, leading to the increase of the
translocation time.

To understand this unexpected behavior, we have also
investigated the distribution for the waiting (residence) time
of bead s, which is defined as the time between the events that
the bead s and the bead s + 1 exit the pore. Figure S shows the
waiting time distribution for N = 256, N, = 30, and different
binding strengths & = 2.5 and 7.5, respectively. For € = 2.5, the
waiting time increases rapidly first and then approaches satura-
tion very quickly, indicating the feature of fast binding and
unbinding. However, for ¢ = 7.5 the waiting time always
increases except for last several monomers. Moreover, the
translocation is faster for € = 7.5 than for € = 2.5 when s <
125; however, it is much slower for € = 7.5 than for € = 2.5 when
s = 125. Altogether, the translocation time for € = 7.5 is much
longer than that for ¢ = 2.5. The reason for the observed
behavior for s 2 125 is that, for € = 7.5 > £, and low chaperone
concentration, almost all chaperones remain bound to the front
part of the chain, so that there are no free chaperones for later
new-emerging segments and the corresponding translocation
becomes diffusive.*”

Figure 6 shows T as a function of N, for different £. We find that
7 initially decreases and subsequently goes up with increasing N..
As stated above, growing N, leads to an increase in Fy,,,4(s) as well
as Fyrans o(5) coy €). Considering that Fy;,(s) is the dominant term
in eq 3 for the initial increase of N, the total force F(s) increases,
resulting in the decrease of 7. Besides, the probability that the
binding site just passing through the pore exit also increases with
growing N, which is favorable to the formation of the ratchet.

However, overfull chaperones give rise to the crowding effect
and the entropic force F,y,,.(s, co, €) prevails in the competition
with Fy;,4(s), hindering the translocation and resulting in the
increase in 7T instead of a continuous fall. Moreover, the corre-
sponding chaperone concentration of the minimum shifts to
higher N, value with increasing €. This is due to the fact that, with
increasing &, the superiority of F,, (s, co, €) works for higher N,
and the formed ratchet could prevent the back-sliding motion of
the chain more effectively. Needless to say, it is conducive for the
translocation of the chain through the nanopore and thus
postpones the advent of the minimum point.
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Figure 7. Translocation time as a function of the chain length N for
different binding energies ¢ under fixed chaperone concentration
N. = 650.

Translocation Time As a Function of the Chain Length.
Similar to the electric-field driven case, the presence of chaper-
ones only on the trans side could also induce a chemical potential
difference between the two sides of the membrane. The scaling of
the translocation time 7 with the chain length N is an important
measure of the underlying dynamics, 7 ~ N* with o being the
scaling exponent. Our previous two-dimensional electric-field
driven translocation simulations®"** show there was a crossover
from o = 2v,p for fast translocation to & = 1 + v,p for slow
translocation, where v, = 0.75 is the Flory exponent for a self-
avoiding chain in two dimensions.’* Most recently, we further
found that for fast translocation processes o = 1.37 in three
dimensions, while it crosses over to @ = 1 + v3p with v3 = 0.588
for slow translocation, corresponding to weak driving forces
and/or high friction.'?

Figure 7 shows the 7 as a function of N for moderate chaperone
concentration N, = 650 and different &. Obviously, the scaling
exponent O depends significantly on é: it initially decreases from
1.97 £ 0.07 to a minimum of 1.41 & 0.01, followed by a slight
increase with increasing €. For higher ¢, the force from the binding
Fiina(s) is greater and dominates the translocation dynamics,
leading to &t A 2v,p, for the fast translocation process as the
electric-field driven translocation.”** With € decreased to € = 1.3,
QL increases to 1.97. If € is decreased further, access to the unbiased
translocation regime may be achieved with . = 1421032

Bl CONCLUSIONS

Using Langevin dynamics simulations, we investigate the
dynamics of chaperone-assisted translocation of a flexible poly-
mer through a nanopore. We find that increasing the binding
energy € between the chaperone and the chain and the chaperone
concentration can greatly improve the translocation probability.
Particularly, with increasing the chaperone concentration a
maximum translocation probability is observed for weak binding.
For a fixed chaperone concentration, the histogram of transloca-
tion time 7 has a transition from a long-tailed distribution to
Gaussian distribution with increasing &. 7 rapidly decreases and
then almost saturates with increasing binding energy for a short
chain; however it has a minimum for longer chains at lower
chaperone concentration. We also show that 7 has a minimum as
a function of the chaperone concentration. For different ¢, a
nonuniversal dependence of 7 on the chain length N is also

observed. These results can be interpreted by characteristic
entropic effects for flexible polymers induced by either the
crowding effect from high chaperone concentration or the
intersegmental binding for the high binding energy.

Generally, chaperones have a size larger than that of a
monomer, giving rise to the “parking lot effect” as observed by
previous studies,”* > leading to a less efficient translocation:
after binding of a chaperone to the chain close to the pore exit,
the chain first needs to diffuse by a chaperone size distance,
before the next binding event occurs. In addition, we have also
assumed that the binding energy is the same along the chain.
However, proteins and nucleic acids consist of a heterogeneous
sequence of amino acids, bases, or base pairs, respectively. It has
been found that the chain heterogeneity is important in the
translocation dynamics for stiff polymers.*” In future studies, it
would be interesting to investigate the effects of the size
difference, the changes in chain flexibility, and the chain hetero-
geneity along the chain on the translocation dynamics.
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